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The mathematics of motion camouflage
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Motion camouflage is a strategy whereby an aggressor moves towards a target while appearing stationary
to the target except for the inevitable change in perceived size of the aggressor as it approaches. The
strategy has been observed in insects, and mathematical models using discrete time or neural-network
control have been used to simulate the behaviour. Here, the differential equations for motion camouflage
are derived and some simple cases are analysed. These equations are easy to simulate numerically, and
simulations indicate that motion camouflage is more efficient than the classical pursuit strategy (‘move
directly towards the target’).
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1. INTRODUCTION

Motivated by observations of mating hoverflies, Sriniva-
san & Davey (1995) described a new form of stealth strat-
egy that can be used by one creature (the shadower, or
aggressor) to approach another (the shadowee, or target).
In motion camouflage, the aggressor moves so that it is
always on the line segment between the target and a given
fixed point. If the effect of size with distance is ignored
then this means that the target is unable to discern that
the aggressor is moving—the aggressor appears to be at its
initial position, or is camouflaged by a stationary object in
the background. There is now strong evidence that
dragonflies use this strategy in territorial disputes
(Mizutani et al. 2003) and that humans can be tricked in
the same way (Anderson & McOwan 2003b). Anderson &
McOwan (2003a) show that an aggressor can achieve a
good approximation to motion camouflage using a neural-
net control system, and use this to reproduce motion-
camouflage trajectories. Srinivasan & Davey (1995)
describe several algorithms by which approximate motion
camouflage might be achieved and present numerical
simulations of these algorithms.

These approaches to simulating motion-camouflage
paths are approximate; they rely either on control methods
or on a set of discrete-time observations. It is clearly
important to be able to determine the accuracy and
efficiency of these simulations, and in § 2 a differential
equation is derived, which gives the ideal motion-camou-
flage paths for an aggressor moving with constant speed.
This differential equation makes it possible to compute
accurate motion-camouflage paths and to compare these
with other strategies or with other algorithms for motion
camouflage. As a first step towards a better understanding
of motion camouflage, the standard test case of a target
moving with constant velocity is treated mathematically at
the end of § 2. In § 3 this test case is investigated numeri-
cally and the solutions are compared with those of the
classic pursuit strategy, ‘travel at constant speed directly
towards the target’, which goes back (possibly) to da Vinci
(Davis 1962). In § 4, the strategy is applied to the pursuit
of a target moving chaotically in three dimensions, and
in § 5 variants of the ideal motion-camouflage equations
are discussed.
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The simulations of §§ 3 and 4 suggest that motion
camouflage is more efficient than the classical pursuit
strategy in the following sense. If the aggressor is quicker
than the target then the motion-camouflage strategy cap-
tures the target faster than does the classical pursuit strat-
egy, while if the aggressor moves a little slower than the
target then motion camouflage is often able to capture the
target while the classical pursuit strategy leads to capture
in only one special case. This result means that some crea-
tures may have evolved motion camouflage as an attack
strategy independent of the camouflage effect. By con-
trast, motion camouflage may be less robust than the
classical pursuit strategy: if the target can manoeuvre itself
between the aggressor and the reference point then either
the aggressor must try to move towards the reference point
or a new reference point must be chosen. The results
described here should make it possible to investigate these
issues in greater depth.

2. THE IDEAL MOTION-CAMOUFLAGE EQUATIONS

Suppose that the position of the target is z(t) and that
of the aggressor is r(t), where z(t) is given and r(t) is to be
found and both lie in either a plane or three-dimensional
Euclidean space. If the aggressor uses motion camouflage
then r(t) lies on the line connecting the target and some
fixed reference point, r0, as shown in figure 1. This
means that

r(t) = r(0) � u(t)(z(t) � r0), (2.1)

where u(t) is a real function with u(0) = 0. An initial con-
sistency condition must also hold:

r(0) × (z(0) � r0) = r0 × z(0),

which ensures that the aggressor starts on the connecting
line. This condition is automatically satisfied if r(0) = r0,
i.e. if the fixed reference point is the beginning of the
aggressor’s attack. To simplify some manipulations this
assumption will be made throughout the remainder of this
paper. In particular, this assumption implies that the
aggressor and target are at the same place at time T if
u(T) = 1. Such a time, if it exists, is called the capture time.

If u(t) can be found then equation (2.1) determines r,
and any continuous function u(t) that takes values of less
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Figure 1. Schematic diagram of part of a motion-camouflage
solution r(t) and target path z(t) showing the geometry
described by equation (2.1). The vector z(t) � r(t)
connecting the two paths at a given time is shown, and this
extends back to the reference point r0 (faint line).

than 1 represents a motion-camouflage path. If both the
aggressor and the target move with constant speed (a stan-
dard assumption) then a unique aggressive path is determ-
ined, although there is also a defensive solution. The
constant-speed constraint is |ż| = v and �ṙ� = c for positive
constants v and c, where the dot indicates differentiation
with respect to time. Differentiating equation (2.1) gives
ṙ = u̇(z(t) � r0) � u(t)ż, and the unknown velocity ṙ can
be eliminated by squaring both sides to obtain the equ-
ation

c2 = u̇2�z(t) � r0�2 � 2u(t)u̇[(z(t) � r0).ż] � v2u2(t). (2.2)

This is a quadratic equation for u̇, and the standard quad-
ratic formula with the positive square root gives the differ-
ential equation for u(t):

u̇ =
�[(z(t) � r0).ż]u � �[(z(t) � r0).ż]2u2 � (v2u2 � c2)�z(t) � r0�2

�z(t) � r0�2

(2.3)

with the initial condition u(0) = 0.
Taking the negative square root in the quadratic for-

mula when solving equation (2.2) for u̇ gives a defensive
solution, an equation for a stealthy retreat. It would be
interesting to know whether any creature uses this
retreat strategy.

Equation (2.3) is the general equation that determines
the ideal motion-camouflage path of the aggressor, and it
is equally valid for motion in two or in three dimensions.
The equation is simple to integrate numerically for arbi-
trary z(t) (as illustrated in the simulations of §§ 3 and 4),
but in the special case of the target moving with constant
velocity in the plane it is possible to get a little further
mathematically.

In this special case with c = v = 1 we may take z = (0,t),
so, setting r0 = (x0, y0), equation (2.3) becomes
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u̇ =
�(t � y0)u � �x2

0 � (t � y0)2 � x2
0u2

x2
0 � (t � y0)2 , (2.4)

with initial condition u(0) = 0. Unfortunately, this equ-
ation does not have a known solution. To see this set
s = t – y0 and define a new function U by

u =
(s2 � x2

0)
1
2U

x0(1 � U 2)
1
2
. (2.5)

Then equation (2.4) implies that U satisfies the differen-
tial equation

U� = (1 � U2)� x0

(s2 � x2
0)

�
2s

(s2 � x2
0)

U�, (2.6)

where the prime denotes differentiation with respect to s
and with U(–y0) = 0. This is an Abel equation of the first
kind (Murphy 1960) for which no closed solution in terms
of the standard special functions is available in the litera-
ture. A survey of what is known about solutions to Abel’s
equation can be found in Cheb-Terrab & Roche (2000).
The best we can do is to write

u(t) =
(x2

0 � (t � y0)2)
1
2U(t � y0)

x0(1 � [U(t � y0)]2)
1
2

, (2.7)

where U(s) is the solution of equation (2.6) with
U(–y0) = 0. Of course, the lack of a solution in closed form
is no barrier to numerical simulations. Some solutions
together with the corresponding motion-camouflage paths
are shown in figure 2.

3. MOTION CAMOUFLAGE AND CLASSICAL
PURSUIT CURVES

In classical pursuit strategies predators move directly
towards their prey at each instant, and the differential
equations modelling this movement are well established.
Davis (1962) ascribes the first mathematical treatment to
Bouguer in 1732. If the prey has position z(t) then the
predator moves on the curve r(t) so that at each instant
velocity is in the direction of the line from r(t) to z(t). If
the predator has (constant) speed c � 0 then the differen-
tial equation for the motion is

ṙ = c
z � r
�z � r�

. (3.1)

If the target is assumed to move in a straight line in the
plane with unit speed and c = 1 (Bouguer’s problem) then
the equation can be solved explicitly, although the paths
are given in terms of special functions (e.g. Davis 1962).

Figure 3a shows a solution of the classical pursuit
problem (P) together with the corresponding motion-
camouflage curve (M) with c = 1.2 and v = 1, so the
aggressor moves faster than the target. Although the
classical pursuit path looks more direct, this is an illusion.
Figure 3b shows that it is only in the final phase of the
motion that there is a significant difference between the
distances to the target in the two strategies, and that it is
the motion-camouflage path that captures the target first.
(In the simulation shown, capture is interpreted as being
within 0.001 units of the target, but the qualitative state-
ment that motion-camouflage captures first appears to be
robust to changes in this distance.) Indeed, further
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Figure 2. (a) Motion-camouflage paths in the (x,y)-plane.
The target is moving along the y-axis with v = 1 and position
z = (0,t) and the aggressor has speed c = 1.2. The different
curves represent the paths of 20 aggressors with different
initial positions. These are regularly spaced on the circle of
radius 5 units centred on the starting position of the target.
(b) The corresponding functions u(t), which are the solutions
of equation (2.4). These curves can be matched to those of
(a) by noting that, at the point of capture, if y = Y when
x = 0 in (a) then u(Y )= 1 in (b).

numerical simulations suggest that this is true more gener-
ally: the distance between aggressor and target decreases
initially with the same linear behaviour in both the classi-
cal pursuit strategy and the motion-camouflage strategy,
but, as shown in figure 3c, the simulated motion-camou-
flage paths are shorter (and hence more efficient) for all
initial conditions equidistant from the starting point of
the target.

If the speed of the aggressor is less than the speed of
the target then motion camouflage appears to be more
efficient than the pursuit strategy, in the sense that capture
is possible from a greater range of initial positions equidis-
tant from the initial position of the target but at different
angles to the line of motion of the target. This observation
is illustrated further in § 4.

The observation that the paths determined by the two
strategies are initially very similar can be made more
precise. If the target path is smooth then it can be expanded
as a (vector) Taylor series in time:

z(t) = z0 � tz1 � t2z2 � …,
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Figure 3. (a) A motion-camouflage path M and a pursuit
path P in the (x,y)-plane. The target is moving along the y-
axis with v = 1 and position z = (0,t) and the aggressor has
speed c = 1.2. The initial position is (5 cos��/4, 5 sin��/4)
with � = 0.5. (b) The distance from the target (D) as a
function of time (t) for the two paths shown in (a). (c) The
time (T ) to capture as a function of angle if the target
moves as in (a). The angular variable � is in units of �/4 as
in (a). The aggressor has speed c = 1.2 and capture is
interpreted as being within 0.001 units of the target. The
times for the motion-camouflage strategy are labelled M
and the times for the pursuit strategy are labelled P.
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where z0, z1 and z2 are constant vectors and the dots rep-
resent terms of order t 3 and higher, which are small when
t is small. If a similar ansatz for r(t) is made and substi-
tuted into eq. (3.1) then a little manipulation gives, on
identifying the constant and linear terms in t,

r = r0 �
ct
d0

d0 �
ct2

2d3
0
(d2

0z1 � (d0.z1)d0 � …, (3.2)

where d0 = z0 – r0 and d0 = |d0|. However, if the ansatz
u(t) = u1t � u2t 2 � … is substituted into the equation for
motion camouflage, equation (2.3), then the coefficients
u1 and u2 can be calculated. Equation (2.1) then implies
that for motion camouflage

r = r0 �
ct
d0

d0 �
ct2

d3
0
(d2

0z1 � (d0.z1)d0) � …. (3.3)

Thus the small-t behaviours of the paths differ only in the
quadratic terms; the two paths are tangential at t = 0. This
also explains why the distances between the target and the
aggressor initially decrease at the same linear rate.

4. CHAOTIC PURSUIT

The examples in §§ 2 and 3 model motion in the plane,
and the motion of the target is linear. In this section, the
same models, motion camouflage given by equation (2.3)
and classical pursuit given by equation (3.1), are used to
investigate more complicated three-dimensional motion of
the target.

Assume that the target moves with constant speed v
along the Rössler chaotic attractor (Rössler 1976). In
other words, z = (z1, z2, z3), with

ż1 = (�z2 � z3)/�,
ż2 = (z1 � 0.15z2)/�,
ż3 = (0.2 � 10z3 � z1z3)/�, (4.1)

where v2�2 = (z2 � z3)2 � (z1 � 0.15z2)2 � (0.2 – 10z3 �
z1z3)2 and � � 0. � has been chosen so that the target
moves with speed v, and � = 0 at the stationary points of
the differential equation, so equation (4.1) is valid only on
the attractor provided that it does not contain any station-
ary points. No direct biological relevance is claimed for
this choice of chaotic target path, which is shown in figure
4a, but it is natural to test pursuit strategies against more
complicated target paths.

Figure 4b shows the path obtained by integrating the
coupled set of four differential equations for motion
camouflage, equations (2.3) and (4.1), with initial target
position (2, 5, 7) and initial aggressor position (3, �1,
�500), with v = 20 and c = 18. The coordinates (x, y, z)
correspond to the position vector r of the aggressor
determined by equation (2.1) once equation (2.3) is
solved. Despite the fact that the target moves faster than
the aggressor, the aggressor captures the target after
approximately 26.4 time units. The classical pursuit prob-
lem, equations (3.1) and (4.1), results in a six-dimensional
set of differential equations and, given the same initial pos-
itions and speeds, the pursuit path is shown in figure 4c.
In this case, the aggressor moves close to the attractor con-
taining the target’s path, but does not get within 0.1 units
of the target in the 200 units of time shown here. Again,
this illustrates that motion camouflage is a more efficient
interception strategy than classical pursuit.
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Figure 4. (a) The Rössler attractor: projection onto the
(z1,z2)-plane of solutions to equation (4.1) with initial
conditions (2, 5, 7). The results of 100 time units with
v = 20 are shown. (b) The motion-camouflage solution with
v = 20, c = 18. The initial position of the aggressor is (3, �1,
�500). (c) The corresponding classical pursuit path.

5. RELATED MODELS

The techniques described here can be used to construct
other motion-camouflage models incorporating different
effects. For example, there is nothing in the derivation of
equation (2.3) that requires the target to move with con-
stant speed, and the equation could easily be modified to
allow the target to change speed. A modification to equ-
ation (2.3) to allow for a time delay 	 between the
aggressor’s observation of the position of the target and
its motion can also be made by replacing z(t) by z(t � 	)
in § 2.

While it is easy to relax the assumption of constant
speed for the target, it is more difficult to do the same
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thing for the aggressor, since it must be replaced by
another constraint to give a unique aggressive solution.
One possible alternative would be to impose a maximum
relative speed of approach. This is natural, since if the
aggressor grows too rapidly as perceived by the target then
the motion camouflage is more likely to be detected. It
would be interesting to determine which strategy within
the space of all motion-camouflage strategies is adopted by
dragonflies. The framework developed here should help to
make this possible.

A related motion-camouflage strategy that is also
observed in dragonflies (Mizutani et al. 2003) involves
remaining stationary with respect to distant objects, i.e.
remaining on the same bearing as seen by the target. As
Mizutani et al. (2003) note, this is equivalent to taking the
fixed reference point at infinity, and is often cited in sailing
manuals (see, for example, Cal Sailing Club 2003) and
pilot training as a criterion indicating a potential collision
course. Again, this is easy to detect in experiments as the
lines connecting the aggressor and the target at different
times will be parallel. The differential equation for the
motion of the aggressor can be derived by fixing a constant
unit vector e and noting that the aggressor must always
be in the direction of e as seen from the target at z. Hence

r = z � ue, (5.1)

which is the starting point for the derivation of another
set of equations. In this case, linear motion by the target
is met by linear motion from the aggressor if capture is
possible.

6. CONCLUSION

Motion-camouflage strategies are likely to be encoun-
tered in many circumstances; humans and insects seem
equally susceptible (Anderson & McOwan 2003b). This
note provides a simple modelling technique that can be
used to assess the strategy numerically using widely avail-
able differential-equation packages. This has also made it
possible to provide accurate pictures of the ideal motion
in standard and non-standard cases. Moreover, the theor-
etical ideas presented here can be easily modified to incor-
porate refinements of the constant-speed solutions.

If the target moves in a straight line with constant speed,
the motion-camouflage equations do not have a closed
solution in terms of standard special functions. However,
simulations show that the motion-camouflage strategy is
more efficient than the classical pursuit strategy (figure
3c), although aggressors moving according to the two stra-
tegies initially close the gap between themselves and the
target at the same linear rate. Furthermore, simulations
indicate that, even if the aggressor moves more slowly than
the target, capture is possible in cases where the classical
pursuit path ends up following the trail of the target, and
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that this holds whether the target moves on a straight line
or on a chaotic attractor.

This paper provides a coherent mathematical frame-
work within which motion-camouflage strategies can be
analysed. It raises many questions, both mathematical and
biological: which motion-camouflage strategy is adopted
by dragonflies and hoverflies? How is the transition
between motion-camouflage and other pursuit strategies
determined in real situations (i.e. when does the illusion
break down owing to size, and how should the target and
aggressor react to this discovery)? What is the relationship
between the aggressor’s path and the strange attractor in
figure 4c? These questions and others can at least be given
a clear mathematical formulation.

The theory presented here does not pretend to explain
how an insect might follow an ideal motion-camouflage
path, but it does make it possible to compute these paths
and to gain insight into the strategy given different target
movement patterns. These ideal paths can also be com-
pared with experimental measurements and theoretical
models that do incorporate realistic biological control
mechanisms, as well as with other ideal strategies such as
the classical pursuit paths discussed here.

The results presented here were obtained while researching a
regular review column for Mathematics Today, the newsletter
of the Institute for Mathematics and its Applications (IMA) in
the United Kingdom. This review, which includes a simplified
version of equation (2.3), appeared in August 2003
(Glendinning 2003).
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